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Abstract

In this paper, we describe an algorithm and implementa-
tion of locality optimizations for architectures with instruc-
tion sets such as Intel’s SSE and Motorola’s AltiVec that
support operations on superwords, i.e., aggregate objects
consisting of several machine words. We treat the large su-
perword register file as a compiler-controlled cache, thus
avoiding unnecessary memory accesses by exploiting reuse
in superword registers. This research is distinguished from
previous work on exploiting reuse in scalar registers be-
cause it considers not only temporal but also spatial reuse.
As compared to optimizations to exploit reuse in cache,
the compiler must also manage replacement, and thus, ex-
plicitly name registers in the generated code. We describe
an implementation of our approach integrated with a com-
piler that exploits superword-level parallelism (SLP). We
present a set of results derived automatically on 4 multime-
dia kernels and 2 scientific benchmarks. Our results show
speedups ranging from 1.3 to 2.8X on the 6 programs as
compared to using SLP alone, and we eliminate the major-
ity of memory accesses.

1 Introduction
In response to the increasing importance of multime-

dia applications in embedded and general-purpose com-
puting environments, many microprocessors now incorpo-
rate an expanded instruction set and architectural extensions
specifically targeting multimedia requirements. The core
component of such architectural extensions is a functional
unit that can operate on aggregate objects, performing bit-
level operations, or SIMD parallel operations on variable-
sized fields in the object (e.g., 8, 16, 32 or 64-bit fields). If
the aggregate objects are larger than the size of a machine
word, then they are called superwords [20]. Examples in-
clude Motorola’s AltiVec and Intel’s SSE, a descendant of
MMX. If the same size as the machine word, then individ-
ual fields are referred to as subwords [22]. A related class

of architectures employ processing-in-memory (PIM) tech-
nology to exploit the high memory bandwidth when pro-
cessing logic is combined on chip with large amounts of
DRAM; several PIM-based architectures rely on superword
parallelism to make more effective use of available memory
bandwidth [2, 17, 3, 11].

While multimedia extension and related architectures
have been available for some time, convenient method-
ologies for developing application code that targets these
extensions are in their infancy. There is recent com-
piler research for such architectures to automatically exploit
superword-level parallelism, performing computations or
memory accesses in parallel in a single instruction is-
sue [20, 27, 8, 10, 1].

In this paper, we recognize an additional optimization
opportunity not addressed by this previous work. An im-
portant feature of all such architectures is a register file of
superwords (e.g., each 128 bits wide in an AltiVec), usually
in addition to the scalar register file. A set of 32 such su-
perword registers represents a not insignificant amount of
storage close to the processor. Accessing data from super-
word registers, versus a cache or main memory, has two
advantages. The most obvious advantage is lower latency
of accesses; even a hit in the L1 cache has at least a 1-cycle
latency. Accesses to other caches in the hierarchy or to main
memory carry much higher latencies. Another advantage is
the elimination of memory access instructions, thus reduc-
ing the number of instructions to be issued.

In this paper, we treat the superword register file as a
small compiler-controlled cache. We develop an algorithm
and a set of optimizations to exploit reuse of data in super-
word registers to eliminate unnecessary memory accesses,
which we call superword-level locality. We evaluate the
effectiveness of these superword-level locality (SLL) op-
timizations through an implementation integrated with the
algorithm for exploiting superword-level parallelism (SLP)
presented in [20].

Our approach is distinguished from previous work on in-
creasing reuse in cache [9, 12, 14, 15, 16, 19, 28, 30], in that



Original SLP only Scalar register reuse only SLP and SLL
Figure 1(a) Figure 1(b) Figure 1(d) Figure 1(f)

Reads 3n2 2n2 + n2/sws n2/2 + n (n2/2 + n)/sws
Writes n2 n2/sws n2 n2/sws

Table 1. Number of array accesses under different optimization paths.

the compiler must also manage replacement, and thus, ex-
plicitly name the registers in the code. As compared to pre-
vious work on exploiting reuse in scalar registers [30, 5, 23],
the compiler considers not just temporal reuse, but also spa-
tial reuse, for both individual statements and groups of ref-
erences. Further, it also considers superword parallelism in
making its optimization decisions. Exploiting spatial and
group reuse in superword registers requires more complex
analysis as compared to exploiting temporal reuse in scalar
registers, to determine which accesses map into the same
superword.

The contributions of this paper are as follows:

• An algorithm for exposing opportunities for compiler-
controlled caching of data in superword register files.

• A description of a set of optimizations, which in ag-
gregate we call superword replacement, for exploiting
superword register reuse.

• Experimental results, derived automatically, compar-
ing performance of six benchmarks/multimedia ker-
nels optimized for parallelism only, SLP, and opti-
mized for both parallelism and superword-level local-
ity. Our results show speedups ranging from 1.3 to
2.8X as compared to using SLP alone, and we elimi-
nate the majority of memory accesses.

The remainder of the paper is organized into 5 sec-
tions. Section 2 motivates the problem and introduces
terminology used in the remainder of the paper. Sec-
tion 3 presents the main superword-level locality algorithm,
which performs a set of transformations and an optimization
search that exposes opportunities for reuse of data in super-
word registers. Section 4 presents optimizations to actually
achieve this reuse of data in superword registers. Section
5 presents experimental results derived automatically by an
implementation in the Stanford SUIF compiler. Section 6
discusses related word and Section 7 presents conclusions
and future work.

2 Background and Motivation

In many cases superword-level parallelism and
superword-level locality are complementary optimiza-
tion goals, since achieving SLP requires each operand to
be a set of words packed into a superword, which happens,
with no extra cost, when an array reference with spatial

reuse is loaded from memory into a superword register.
Therefore, in many cases the loop that carries the most
superword-level parallelism also carries the most spatial
reuse, and benefits from SLL optimizations. In this paper,
we achieve SLL and SLP somewhat independently, by
integrating a set of SLL optimizations into an existing SLP
compiler [20]. The remainder of this section motivates the
SLL optimizations.

Achieving locality in superword registers differs from lo-
cality optimization for scalar registers. To exploit temporal
reuse of data in scalar registers, compilers use scalar re-
placement to replace array references by accesses to tempo-
rary scalar variables, so that a separate backend register al-
locator will exploit reuse in registers [5]. In addition, unroll-
and-jam is used to shorten the distances between reuse of
the same array location by unrolling outer loops that carry
reuse and fusing the resulting inner loops together [5]. In
conventional architectures with scalar register files, spatial
locality can only be obtained in caches.

In contrast, a compiler can optimize for superword-level
locality in superword registers locality through a combina-
tion of unroll-and-jam and superword replacement. These
techniques not only exploit temporal reuse of data, but
also spatial reuse of nearby elements in the same super-
word. In fact, even partial reuse of superwords can be
exploited by merging the contents of two registers con-
taining superwords that are consecutive in memory (see
Section 4.3). Thus, as is common in multimedia applica-
tions [25], streaming computations with little or no tem-
poral reuse can still benefit from spatial locality at the
superword-register level, as well as at the cache level.

While cache optimizations are beyond the scope of this
paper, we observe that the SLL optimizations presented
here can be applied to code that has been optimized for
caches using well-known optimizations such as unimodu-
lar transformations, loop tiling and data prefetching. When
combining loop tiling for caches, superword-level paral-
lelism and superword-level locality optimizations, the tile
sizes should be large enough for superword-level paral-
lelism, and for unroll-and-jam and superword replacement
to be profitable.

These points are illustrated by way of a code example,
with the original code shown in Figure 1(a). This example
shows three optimization paths. Figure 1(b) optimizes the
code to achieve superword-level parallelism. Here, sws, an
abbreviation for superword size, is the number of data ele-



for(i=0; i<n; i++)
for (j=0; j<n; j++)

a[i][j] = a[i-1][j] * b[i] + b[i+1];

(a) Original loop nest.

for(i=0; i<n; i++)
for (j=0; j<n; j+=sws)

a[i][j:j+sws-1] = a[i-1][j:j+sws-1] * b[i] + b[i+1];

(b) After superword-level parallelism(j loop).

for(i=0; i<n; i+=2)
for (j=0; j<n; j++) {

a[i][j] = a[i-1][j] * b[i] + b[i+1];
a[i+1][j] = a[i][j] * b[i+1] + b[i+2];

}

(c) Unroll-and-jam on the example in (a)(i loop).

tmp1 = b[0];
for(i=0; i<n; i+=2) {

tmp2 = b[i+1];
tmp3 = b[i+2];
for (j=0; j<n; j++) {

tmp4 = a[i-1][j] * tmp1 + tmp2;
a[i+1][j] = tmp4 * tmp2 + tmp3;
a[i][j] = tmp4;

}
tmp1 = tmp3;

}

(d) After scalar replacement on the code in (c).

for(i=0; i<n; i+=2)
for (j=0; j<n; j+= sws) {

a[i][j:j+sws-1] = a[i-1][j:j+sws-1] * b[i] + b[i+1];
a[i+1][j:j+sws-1] = a[i][j:j+sws-1] * b[i+1] + b[i+2];

}

(e) Unroll-and-jam on the example in (b)(i loop).

tmp1[0:sws-1] = b[0:sws-1];
stmp1 = tmp1[0];
stmp2 = tmp1[1];
field = 2;
for(i=0; i<n; i+=2) {

// ’field’ denotes an index into ’tmp1’ for stmp3
if(field == 0)

tmp1[0:sws-1] = b[i+2:i+sws+1];
stmp3 = tmp1[field];
for (j=0; j<n; j+= sws) {

tmp2[0:sws-1] = a[i-1][j:j+sws-1] * stmp1 + stmp2;
a[i+1][j:j+sws-1] = tmp2[0:sws-1] * stmp2 + stmp3;
a[i][j:j+sws-1] = tmp2[0:sws-1];

}
stmp1 = stmp3;
stmp2 = tmp1[field+1];
field = (field+2)%sws;

}

(f) After superword replacement on code in (e)

Figure 1. Example code.

ments that fit within a superword. For example, if a and b
are 32-bit float variables, on a machine with 128-bit super-
words, sws = 4. In Figures 1(c) and (d), we show how the
original program can instead be optimized to exploit reuse
in scalar registers, using unroll-and-jam and scalar replace-
ment, respectively. In Figures 1(e) and (f), we combine
these ideas, using unroll-and-jam and superword replace-
ment, respectively, to transform the code in (b) for both
superword-level parallelism and superword-level locality.

Table 1 shows how the three different optimization paths
affect the number of array accesses to memory in the final
code. The original code has n2 reads and writes to array a
and 2n2 reads to array b. Exploiting superword-level par-
allelism in loop j, as in Figure 1(b) reduces the number of
reads and writes to array a by a factor of sws since each
load or store operates on sws contiguous data items; for
array b, there is no change since the array is indexed by i
rather than j. If instead the code was optimized for scalar
register reuse, as in Figure 1(d), we can reduce the num-
ber of array reads of a down by a factor of 2, and reads
of b by a factor of n, with the number of writes remaining
the same. By combining superword-level parallelism and
superword-level locality as in Figure 1(f), we see that the
number of reads and writes is further reduced by a factor
of sws. Figure 1(f) illustrates some of the challenges in
exploiting reuse in superwords. Analysis must identify not
just temporal, but also spatial reuse, and for both individ-
ual statements and groups of references. The compiler also
must generate the appropriate code to exploit this reuse; for
example, we select scalar fields of b from the superword,
since we are not parallelizing the i loop.

The remainder of this paper describes how the com-
piler automatically generates code such as is shown in Fig-
ure 1(f), and the performance improvements that can be ob-
tained with this approach.

3 Superword-Level Locality Algorithm

The superword-level locality algorithm has four main
steps, as summarized in the next subsection. At the heart
of the algorithm is an approach for counting both memory
accesses and register requirements for storing reused data,
which is the subject of the subsequent subsection.

3.1 Steps of Algorithm

Step 1: Identifying Reuse. First, we identify array vari-
ables and loops carrying temporal or spatial reuse. We ex-
amine the dependence graph, looking for references that
have loop-carried consistent dependences (i.e., constant de-
pendence distances) or are loop invariant with one of the
loops, and so have opportunities for data reuse that can be
exposed by unroll-and-jam.

Applying unroll-and-jam to a loop with a loop-variant
reference creates loop-independent dependences in the un-



rolled loop body. In the example in Figure 1(a), there is a
true dependence between references A[i][j] and A[i − 1][j]
with distance vector 〈1, 0〉. After unroll-and-jam, a loop-
independent dependence is created between A[i][j] in the
first statement and A[i][j] in the second statement, cre-
ating a reuse opportunity. Similarly, spatial and group-
temporal reuse can be exposed by unroll-and-jam when a
reference has a loop-carried dependence with the loop that
traverses the lowest array dimension. For loop-invariant ref-
erences, unroll-and-jam generates loop-independent depen-
dences between the copies of the reference in the unrolled
loop body.

Step 2: Determining unroll factors for candidate loops.
The algorithm next determines the unroll factors for each
candidate loop that carries reuse and for which unroll-and-
jam is legal, with the following goal.

Optimization Goal: Find unroll factors
〈X1, X2, ...Xn〉 for loops 1 to n in a n-deep loop
nest such that the number of memory accesses
is minimized, subject to the constraint that the
number of superword registers required does not
exceed what is available.

The search algorithm uses the reuse information and the
number of registers available to prune the search space, as
follows. Loops that carry no reuse are not included in the
search. Next, we observe that for each unrolled loop l, the
amount of reuse of an array reference with reuse carried by
l increases with the unroll factor Xl. Therefore reuse is a
monotonic, non-decreasing function of the unroll factor for
each loop, given that the unroll factor of all other loops are
fixed. The algorithm uses this property to prune the search
space, avoiding searching for all possible unroll factors for
a given loop. It traverses the search space by varying the
unroll factor of one loop while keeping the unroll factor of
all other loops fixed. A binary search within a dimension
can further prune the search. Also, the unroll factor of each
loop, given that all other unroll factors are fixed, is limited
by the number of registers available. Once the search finds
an unroll factor for a given loop that exceeds the register
limit, it prunes all larger unroll factors for that loop from
the search space.

To guide the search towards the above optimization goal,
we calculate the superword footprint, which represents the
number of superwords accessed by the unrolled iterations
of the loop nest, as a function of the unroll factor. The su-
perword footprint can be used both to count how many reg-
isters are required to hold the accessed data, as well as how
many memory accesses remain in the loop nest. Assuming
that all variables are kept in registers when the superword
footprint fits in the superword register file, the number of
memory accesses associated with a set of references is sim-
ply the superword footprint for the references multiplied by

the bounds of the loops in which they are nested after un-
rolling. Our method for selecting unroll factors based on re-
quired superword registers differs from related approaches
oriented towards scalar registers [5], accounting for not only
temporal but also spatial and group reuse. In the next sub-
section, we describe in detail the calculation of the super-
word footprint.

Step 3: Unroll-and-Jam and Superword Replacement.
Once the unroll factors are decided, the loop nest is trans-
formed and array references are replaced with accesses to
superword temporaries, as discussed in Section 4.

3.2 Computing the Superword Footprint

The algorithm for computing the superword footprint for
a loop nest first partitions the references in the loop into
groups of uniformly generated references [30], that is, ref-
erences to the same array such that, for each array dimen-
sion, the array subscripts differ only by a constant term1.
Then, for each group of references, it computes the regis-
ters needed to keep the data accessed in the unrolled loop
body. Finally, the total number of registers is computed as
the sum of those of each group of uniformly generated ref-
erences. We first discuss how to compute the registers re-
quired for a single reference as a function of the unroll fac-
tors of each unrolled loop. Then we discuss how to compute
the register requirements for a group of uniformly generated
references. The registers required for such a group may be
smaller than the sum of the registers required for each ref-
erence, if computed individually, since the same superword
may be accessed by two or more copies of the original ref-
erences when the loops are unrolled.

Our method determines the number of superword reg-
isters required to hold the data accessed by the loop refer-
ences in the unrolled loops. However, extra registers may be
needed to, for example, align a superword operand which
is already kept in superword registers. That is, the com-
putation may require more registers than those needed for
storing the data. Therefore, we reserve some scratch regis-
ters for manipulating data and compute the number of regis-
ters needed just for storing the data accessed in the unrolled
loops.

To simplify the presentation, we assume a loop nest of
depth n where all array references have array subscripts
that are affine functions of a single index variable (SIV sub-
scripts)2. We also assume that each p-dimensional array ref-
erenced by the loop is defined as A[s1][s2] . . . [sp], where
sd is the size of dimension d, 1 ≤ d ≤ p. Dimension
p is the lowest dimension of the array, i.e., the dimension

1We assume that two or more references that access the same array but
are not uniformly generated access distinct data in memory, which results
in a conservative estimate of the number of registers.

2Our current implementation can handle affine SIV subscripts and cer-
tain affine MIV subscripts.



a*1 + b
a*2 + b
a*3 + b
a*4 + b

a*(Xld-1) + b
a*Xld + b

superword

superword footprint of size = a*Xld

sws

superword footprint:

l
 
=
 
1
,
.
.
.
,
X
l
d

Superwords
in memory

(a) d = p and ad < sws

... ... ...

Π
p

i=d+1
si

Superwords
in memory

(ad*1+b)* Π
p

i=d+1
si

(ad*2+b)* Π
p

i=d+1
si

(ad*Xld+b)* Π
p

i=d+1
si

...

a* Π
p

i=d+1
sioffset =

sd* Π
p

i=d+1
si

(b) d �= p

Figure 2. Superword footprint of a single ref-
erence.

in which consecutive elements are in consecutive memory
locations. A reference v to array A is then of the form,
A[a1 ∗ l1 + b1][a2 ∗ l2 + b2] . . . [ap ∗ lp + bp]. Similarly,
the array subscripts of the uniformly generated references
v1, v2, ... vm in dimension d are ad ∗ ld + b1, ad ∗ ld + b2,
..., ad ∗ ld + bm, respectively. Thus, a reference with SIV
subscripts has each array dimension associated with just a
single loop index variable in the nest. We also assume that
the arrays are aligned to a superword in memory and that
the loops are normalized.

3.2.1 Superword Footprint of a Single Reference

For each reference v with array subscripts ad∗ld+b, where d
is the array dimension and ld is the loop variable appearing
in subscript d, the number of registers required to keep the
data referenced by v when ld is unrolled by Xld is given by
the superword footprint of v in ld, or Fld(v). The superword
footprint consists of the superwords accessed by all copies
of v resulting from unrolling.

When dimension d is the lowest array dimension (d =
p), the superword footprint is given by Equation (1). Equa-
tion (1a) corresponds to the footprint of a loop-invariant
reference. Equation (1b) corresponds to the footprint of a

reference with self-spatial reuse within a superword, as il-
lustrated in Figure 2(a), and (1c) holds when the reference
has no spatial reuse.

Fld(v) =




1 (a) if ad = 0⌈
Xld

∗ad

sws

⌉
(b) if ad < sws

Xld (c) if ad ≥ sws

(1)

When d is one of the higher dimensions, 1 ≤ d < p,
and loop ld is unrolled, the offset between the footprints of
each copy of v is ad ∗ ∏p

i=d+1 si, where si is the size of
the ith array dimension, as shown in Figure 2(b). Assum-
ing that the size of the lowest array dimension (sp) is larger
than sws, which is usually the case in practice for realistic
array dimensions, each copy of v in the unrolled loop body
corresponds to a separate footprint, as shown in Figure 2(b).
Therefore the size of the footprint of v in ld is the sum of the
Xld disjoint footprints, and is recursively defined by Equa-
tion (2), where Flp(v) is computed as in Equation (1).

Fld(v) = Xld ∗ Fld+1(v)

= (
p−1∏
i=d

Xli) ∗ Flp(v) (2)

For a single reference, the number of superword registers
given by Equation (1) and the number of scalar registers that
would be required if the same unroll factors were used differ
only when ad < sws, that is, when spatial reuse can be
exploited in superword registers. For a group of uniformly
generated references the analysis must also consider group
reuse, as discussed next.

3.2.2 Superword Footprint of a Reference Group

The number of registers required to keep a group of uni-
formly generated references V = {v1, v2, ..., vm} when
loop ld is unrolled by Xld is the superword footprint of the
group, Fld(V ). The superword footprint of a group consists
of the union of the footprints of the individual references,
as some of the reference footprints may overlap, depend-
ing on the distance between the constant terms in the array
subscripts.

The footprints of two uniformly generated references
may overlap in dimension d only if they overlap in all di-
mensions higher than d. For example, the footprints of ref-
erences A[2i][j+2] and [2i+1][j] do not overlap in the high-
est (row) dimension, since the first reference accesses the
even-numbered rows of the array and the second accesses
the odd-numbered rows. Therefore the footprints cannot
overlap in the lowest (column) dimension. On the other
hand, the footprints of A[2i][j +2] and A[2i+4][j] overlap
in the row dimension for iterations i1, i2, 1 ≤ i1, i2 ≤ Xi,
such that 2i1 = 2i2 + 4. For the iterations of i in which
the footprints overlap in the row dimension, the footprints
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Figure 3. Superword footprint of a group of references.

may overlap in the column dimension if there exist itera-
tions j1, j2, 1 ≤ j1, j2 ≤ Xj , such that j1 + 2 = j2.

The superword footprint of a group V in a set of un-
rolled loops is computed as follows. For each dimension
d, from highest to lowest dimension, the footprint is com-
puted assuming that the footprints of the references in the
group overlap in the higher dimensions. For each dimen-
sion d < p, the algorithm partitions references into subsets
such that each subset corresponds to a disjoint footprint in
dimension d. Then, for each subset, the algorithm recur-
sively computes the footprint in dimension d + 1, as we
now describe.

Dimension d is the lowest dimension (d = p). We first
compute the group footprint of two array references, and
then we extend it for m references. The group footprint of
two references {v1, v2}, with lowest dimension subscripts
ad ∗ ld + b1 and ad ∗ ld + b2 such that b1 ≤ b2, when loop
ld is unrolled by Xld is given by Equation (3) in Figure 3.

Equations (3a), (3b) and (3c) correspond to combi-
nations of two basic conditions which determine the super-
word footprint of a pair of uniformly generated references.
The first condition is whether the references have self-
spatial reuse within a superword, that is, whether ad < sws.
The second is whether the footprints may overlap, which is
the case when (b2 − b1) < ad ∗ Xld .

Figure 3 shows four examples of superword footprints
corresponding to Equation (3). Figure 3(a) corresponds to

Equation (3a), where the footprints may overlap and the
group footprint is the union of the two footprints. Each of
the individual footprints is a set of Xld superwords since the
references have no spatial reuse. The footprints overlap if
(b2 − b1) is evenly divided by ad and there exists an integer
value k, 1 ≤ k ≤ Xld , such that k = 1+(b2−b1)/ad. This
equation precisely computes the overlapped footprint when
the two footprints have group temporal reuse. For group
spatial reuse, we conservatively approximate the footprint
with Equation (3c). In Figure 3(b) the footprints of v1 and
v2 overlap, and both references have spatial reuse within
a superword. The corresponding footprint size is given by
Equation (3b).

Figures 3(c) and 3(d) correspond to Equation (3c), where
the footprints do not overlap and therefore the group foot-
print is the sum of the individual footprints. In Figure 3(c)
v1 has no self-spatial reuse and each copy of v1 in the
unrolled loop body accesses a distinct superword, and the
same is true for v2. In Figure 3(d) both v1 and v2 have su-
perword spatial reuse.

The number of registers required for reference group
V = {v1, v2, ..., vm} is computed by extending the equa-
tions above to more than two references. Here we describe
the most interesting case (corresponding to Equation (3b)),
where the footprints overlap and the references have spa-
tial reuse. A subset group Vi = {vimin , vimin+1 , ..., vimax}
is defined by lowest dimension subscripts ap ∗ lp + bj ,



imin ≤ j ≤ imax, where the references have been sorted
so that bj−1 ≤ bj . Vi has a footprint consisting of contigu-
ous superwords if there is self-spatial reuse (ap ≤ sws)
and possible overlap (bj − bj−1 ≤ ap ∗ Xlp) for all j
such that imin < j ≤ imax. To compute the number of
registers required for the entire group, the algorithm par-
titions V into disjoint subsets Vi as defined above, where
∀j imin < j ≤ imax,

(bj − bj−1 ≤ ap ∗ Xlp) ∧
(bimin = b1 ∨ bimin − bimin−1 > ap ∗ Xld) ∧
(bimax = bm ∨ bimax+1 − bimax > ap ∗ Xld) (4)

Each subset Vi corresponds to a footprint of contiguous
superwords consisting of the union of the individual foot-
prints, with size given by Equation (5).

Fld(Vi) = Fld({vimin , ..., vimax})
=

⌈
ap ∗ Xlp + bimax − bimin

sws

⌉
(5)

The total number of superword registers required for the
references in V is then the sum of the disjoint footprints of
the sets Vi, as in (6).

Fld(V ) =
∑

i

Fld(Vi)

=
∑

i

⌈
ap ∗ Xlp + bimax − bimin

sws

⌉
(6)

Dimension d is not the lowest dimension (d �= p). When
d is one of the higher dimensions, the superword footprint
of V = {v1, v2, ..., vm} in loop ld is again the union of the
individual footprints.

From Section 3.2.1, the footprint of each reference vi in
the unrolled loop body consists of a set of Xld disjoint foot-
prints, where each of the Xld footprints starts at superword
(ad ∗ ld +bj)∗

∏p
i=d+1 si, where si is the size of dimension

i, and 1 ≤ ld ≤ Xld .
Therefore the footprints of different references in the

group may overlap for some superwords, depending on the
values of ad, bj and the unroll factor Xld . The footprints
of two uniformly generated references v1 and v2 overlap
in dimension d if there exists an integer value k such that
1 ≤ k ≤ Xld that satisfies Condition 7.

ad ∗ k + b1 = ad + b2. (7)

Furthermore, if there exists k satisfying the above condition,
the footprints corresponding to the k to Xld copies of v1 in
the unrolled loop body overlap with those corresponding to
the first Xld − k + 1 copies of v2. The footprint of {v1, v2}

is then given by Equation (8).

Fld(v1, v2) = (l1 − 1) ∗ Fld+1(v1)
+ (Xld − l1 + 1) ∗ Fld+1(v1, v2)
+ (l1 − 1) ∗ Fld+1(v2) (8)

To compute the size of the entire footprint of V in ld, our
algorithm partitions V into subsets Vi = {vimin , ..., vimax}
such that, for any j, imin < j ≤ imax, the pair {vj−1, vj}
satisfies Condition (4). The footprint of Vi is the union of
the overlapped footprints of its reference set and is com-
puted by extending Equation (8) to more than two refer-
ences.

4 Optimizations for Superword Replacement

After the appropriate unroll factors are determined by the
algorithm in the previous section, the unrolled code is then
optimized for superword-level parallelism. Not until after
SLP are the final code transformations performed to actu-
ally exploit reuse in superword registers. In this section, we
briefly describe these transformations.

4.1 Replacing Redundant Loads and Stores

Our compiler replaces redundant loads and stores
from/to memory with accesses to superword temporaries.
Since the code is already unrolled, it is very straightforward
to recognize these opportunities. The compiler simply de-
termines that addresses and offsets for different memory ac-
cesses fit within the same superword, and verifies that there
are no intervening kills to the memory locations.

4.2 Packing in Superword Registers

As part of SLP’s code generation, whenever data is
packed to form superwords, this is done through memory.
A data element is loaded into a scalar register from the
source location and stored to the destination location. Pack-
ing through memory is in some sense motivated by the fact
that many multimedia extension architectures do not sup-
port register-to-register transfers between scalar and super-
word register files.

In our system, we have developed an optimization we
call register packing, shown in Figure 4, to perform this
packing in the superword register file. We take advantage
of two instructions that are common in multimedia exten-
sion architectures, which we call replicate and shift-and-
load. Replicate replicates one element of a source register
to all elements of a destination register. Shift-and-load takes
two source registers. The first source register is shifted left
by the amount of the third argument and the same amount
is taken from the second source register to fill the destina-
tion register. Packing these operands in superword registers
eliminates numerous scalar loads and stores.



w = *((float *)&a + 0); temp1 = replicate(a, 0);
x = *((float *)&b + 0); temp2 = replicate(b, 0);
y = *((float *)&c + 0); temp3 = replicate(c, 0);
z = *((float *)&d + 0); temp4 = replicate(d, 0);
*((float *)&p + 0) = w; p = shift and load(temp1, temp1, 4);
*((float *)&p + 1) = x; p = shift and load(p, temp2, 4);
*((float *)&p + 2) = y; p = shift and load(p, temp3, 4);
*((float *)&p + 3) = z; p = shift and load(p, temp4, 4);

(a) Packing through memory (b) Packing in registers

Figure 4. Register Packing

4.3 Shifting for Partial Reuse

Spatial reuse within a superword happens when distinct
loop iterations access different data in the same superword.
Partial spatial reuse of superwords occurs when distinct
loop iterations access data in consecutive superwords in
memory, partially reusing the data in one or both super-
words, as shown by the example in Figure 5, and illustrated
graphically in Figure 5(d). In this example, as before as-
suming that sws = 4, array reference b[i + j] has partial
spatial reuse in loop i. For a fixed value of i and j, the data
accessed in iteration 〈i, j〉 consists of the last three words
of the superword accessed in iteration 〈i − 1, j〉, plus the
first word of the next superword in memory. This type of
reuse can be exploited by shifting the first word out of the
superword, and shifting in the next word, as in Figure 5.
As shown in Figure 5(c), only two superwords need to be
loaded for the data accessed in the 4 copies of b[i+ j] in the
loop body, after shifting is applied. Before shifting, b[i + j]
had to be loaded from memory (and aligned, for architec-
tures that support only aligned accesses) for each of the four
copies of b[i + j] in the loop body.

Detecting the applicability of superword shifting is
straightforward, involving checking the dependence dis-
tance on the loop for small, constant distances. Code gener-
ation is also straightforward, since multimedia extension ar-
chitectures support efficient shifting and permutation mech-
anisms for aligning and rearranging data in superwords.

5 Experimental Results

This section presents an experiment that demonstrates
the dramatic performance improvements that can be derived
from compiler-controlled caching in superword registers.
We describe an implementation that incorporates superword
register locality optimizations into an existing compiler ex-
ploiting superword-level parallelism [20]. We present a set
of results on four multimedia kernels and two scientific ap-
plications, derived automatically from our implementation.

5.1 Implementation and Methodology

Figure 6 illustrates the system we have developed for this
experiment, which uses the Stanford SUIF compiler as its

for (i = 0; i < n; i ++)
for (j = 0; j < n; j ++)

a[i][j] = b[i+j] * c[j];

(a) Original loop nest

for (i = 0; i < n; i += 4)
for (j = 0; j < n; j += 4){

a[i][j:j+3] = b[i+j:i+j+3] * c[j:j+3];
a[i+1][j:j+3] = b[i+j+1:i+j+4] * c[j:j+3];
a[i+2][j:j+3] = b[i+j+2:i+j+5] * c[j:j+3];
a[i+3][j:j+3] = b[i+j+3:i+j+6] * c[j:j+3];

}

(b) After unroll-and-jam and SLP, assuming sws = 4).

for (i = 0; i < n; i += 4)
for (j = 0; j < n; j += 4){

tmp1[0:3] = b[i+j:i+j+3];
tmp2[0:3] = b[i+j+4:i+j+7];
a[i][j:j+3] = tmp1[0:3] * c[j:j+3];
shift and load (tmp1[0:3], tmp2[0:3], 1);
a[i+1][j:j+3] = tmp1[0:3] * c[j:j+3];
shift and load (tmp1[0:3], tmp2[0:3], 1);
a[i+2][j:j+3] = tmp1[0:3] * c[j:j+3];
shift and load (tmp1[0:3], tmp2[0:3], 1);
a[i+3][j:j+3] = tmp1[0:3] * c[j:j+3];

}

(c) After shifting across superword registers.
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(d) Graphical depiction of shifting.

Figure 5. Shifting registers for partial reuse.
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Figure 6. Implementation.



Name Description Data Width Input Size
FIR Finite impulse response filter 32-bit float 1K filter, 1M signal

VMM Vector-matrix multiply 32-bit float 512 elements
MMM Matrix-matrix multiply 32-bit float 1K elements
YUV RGB to YUV conversion 16-bit integer 32K elements

SWIM Shallow water model 32-bit float Specfp95 reference input
TOMCATV Mesh generation 32-bit float Specfp95 reference input

Table 2. Benchmark programs.

underlying infrastructure [18]. The input to the system is a
C program, which is then optimized by passes in SUIF, in-
cluding our Superword Locality analysis described in Sec-
tion 3, followed by the Superword-Level Parallelism (SLP)
optimization passes by Larsen and Amarasinghe[20], and
finally, an optimization pass that performs superword re-
placement as described in Section 4 to steer the compiler to
obtain the reuse in superword registers that the SLL algo-
rithm determined was possible.

The output from the SUIF portion of the system is an op-
timized C program, augmented with special superword data
types and operations. Currently, the resulting code is passed
to a Gnu C backend, modified to support superword data
types and operations for the PowerPC AltiVec instruction-
set architecture extensions. Each superword operation cor-
responds, in most cases, to a single instruction in the Al-
tiVec ISA. The role of the GCC backend includes replacing
the vector operations with the corresponding AltiVec super-
word instruction, and allocating the vector data types to the
superword registers. The resulting code is executed on a
533 MHz Macintosh PowerPC G4, which has a superword
register file consisting of 32 128-bit registers.

5.2 Performance Measurements

We have applied the previously-described implementa-
tion to four of the five multimedia kernels and the two sci-
entific programs from the Specfp95 benchmark suite for
which execution time speedups were reported in Larsen
and Amarasinghe, summarized in Table 2 [20]. As a first
step, we verified that we could reproduce their previously
reported results. For purposes of comparison, we initially
followed the same methodology established in Larsen and
Amarasinghe [20]: (1) we used the same programs; (2) all
versions of the code were compiled on the AltiVec without
optimization; and, (3) baseline measurements were derived
by compiling the unparallelized code for the PowerPC G4.
We are using an updated implementation of SLP from what
was published, as well as a faster target machine and new
releases of GCC and the Linux operating system, so there
are some differences in results, but they are very minor.

Larsen and Amarasinghe were unable to use optimiza-
tion on the AltiVec-extended GCC backend at the time
of their study, but in the intervening time, this Motorola-
supplied backend has become more robust. For the results
presented in this section, we modify the methodology to
perform “-O3” optimizations. To understand the overall
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(a) Vector loads and stores removed. (b) Scalar loads and stores removed.

Figure 7. Reduction in dynamic memory
accesses due to superword replacement.

benefits of exploiting compiler-controlled caching in super-
word registers, we have compared the results of the full sys-
tem with those obtained when SLP is used alone. For this
reason, we report results where SLP is applied to the origi-
nal codes and compare these results to the full system.

We show two sets of results. First, in Figure 7(a), we
show the percentage of vector loads and stores eliminated
by the full system, as compared with SLP alone. Our ap-
proach eliminates over 50% of the vector loads and stores
in three of the four kernels, and over 85% in SWIM and
TOMCATV. We also eliminate scalar loads and stores using
register packing, as described in Section 4. In Figure 7(b),
we see that our approach eliminates over 90% of the scalar
loads and stores in the four kernels, and over 35% in SWIM
and TOMCATV.

Figure 8 shows how these reductions in instructions
translates into speedups over SLP. To isolate the benefits of
individual components of our system, we measure the per-
formance of the code at several stages of the optimization
process. The first bar, normalized to 1, shows the results
of SLP alone. The second bar, called Unrolled+SLP, shows
the results of running the first portion of the SLL algorithm,
described in Section 3, which performs unroll-and-jam on
the loop nest to expose opportunities for superword reuse,
and following up with SLP. This bar isolates the impact of
unrolling, since it is not until after SLP that this reuse is
actually exploited. Also, because it is reordering the it-
eration space to bring reuse closer together, this version
will also obtain locality benefits in the data cache. Thus,
this bar provides the cache locality benefits of unroll-and-
jam, which can be compared against the additional improve-
ments from superword register locality. The third bar, Su-
perword Replacement, provides speedup using Superword
Replacement and Shifting, as described in Section 4. The
final bar, entitled Register Packing, shows the additional
improvement due to this technique, also described in Sec-
tion 4.

Overall, we see that in combination, applications achieve
speedups between 1.3 and 2.8 over SLP alone, with an av-
erage of 2.2X. Consideration of TOMCATV and SWIM
shows that both programs have little temporal reuse, al-
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Figure 8. Speedups over SLP alone.

though there is a small amount of spatial reuse that is ex-
ploited with our approach, particularly in TOMCATV. We
are obtaining a locality benefit due to unroll-and-jam. We
also observe additional SLP due to iteration-space splitting,
motivated by the need to create a steady-state loop where
the data is aligned to a superword boundary. The four other
programs show a significant improvement from superword
replacement. For VMM, MMM and FIR, there are also
huge gains due to register packing.

In summary, the SLL techniques presented in this paper
dramatically reduce the number of memory accesses and
yield significant performance improvements across these 6
programs. Thus, this paper has demonstrated the value of
exploiting locality in superword registers in architectures
that support superword-level parallelism such as the Al-
tiVec.

6 Related Research

For well over a decade, a significant body of research
has been devoted to code transformations to improve cache
locality, most of it targeting loop nests with regular data
access patterns [13, 6, 31, 32]. Loop optimizations for
improving data locality, such as tiling, interchanging and
skewing, focus on reducing cache capacity misses. Of par-
ticular relevance to this paper are approaches to tiling for
cache to exploit temporal and spatial reuse; the bulk of this
work examines how to select tile sizes that eliminate both
capacity misses and conflict misses, tuned to the problem
and cache sizes [7, 9, 12, 14, 15, 16, 19, 28, 30, 26]. The key
difference between our work and that of tiling for caches is
that interference is not an issue in registers. Therefore, mod-
els that consider conflict misses are not appropriate. Fur-
ther, our code generation strategy must explicitly manage
reuse in registers.

There has been much less attention paid to tiling and
other code transformations to exploit reuse in registers,
where conflict misses do not occur, but registers must be

explicitly named and managed. A few approaches examine
mapping array variables to scalar registers [30, 5, 23]. Most
closely related to ours is the work by Carr and Kennedy,
which uses scalar replacement and unroll-and-jam to ex-
ploit scalar register reuse [4]. Like our approach, in deriving
the unroll factors, they use a model to count the number of
registers required for a potential unrolling to avoid register
pressure, and they replace array accesses, which would re-
sult in memory accesses, with accesses to temporaries that
will be put in registers by the backend compiler. Their
search for an unroll factor is constrained by register pres-
sure and another metric called balance that matches mem-
ory access time to floating point computation time. Our
approach is distinguished from all these others in that the
model for register requirements must take spatial locality
into account, we replace array accesses with superwords
rather than scalars, and we also consider the optimizations
in light of superword parallelism.

There are several recent compilation systems developed
for superword-level parallelism [20, 27, 8, 10, 1]. Most, in-
cluding also commercial compilers [29, 24], are based on
vectorization technology [27, 10]. In contrast, Larsen and
Amarasinghe devised a superword-level parallelization sys-
tem for multimedia extensions [20]. They point out that
there are many differences between the multimedia exten-
sion architectures and vector architectures, such as short
vectors, ease of mixing with scalar instructions, and need
for alignment of memory accesses [21]. They argue that
their algorithm for finding superword-level parallelism from
a basic block instead of a loop nest is much more effec-
tive than using vectorization-based techniques. None of the
above approaches exploit reuse in the superword register
file.

7 Conclusion

This paper presents an algorithm for compiler-controlled
caching in superword register files. The algorithm is appli-
cable to multimedia extensions such as Intel’s SSE, Pow-
erPC’s AltiVec, and also to Processor-in-memory (PIM) ar-
chitectures with support for superword operations.

We implemented our approach in an existing compiler
targeting superword-level parallelism. We presented exper-
imental results, derived automatically, comparing the per-
formance of six benchmarks/multimedia kernels optimized
for parallelism only, using SLP, and optimized for both par-
allelism and locality. Our results show speedups ranging
from 1.3 to 2.8X, and an average of 2.2X, on the 6 pro-
grams as compared to using SLP alone, and most memory
accesses are removed.

The approach taken here that separates optimizations
for SLL and SLP is convenient for implementation pur-
poses, since we are building upon the work of others. Fur-
ther, as there are now a few other compilers that exploit



superword-level parallelism [27, 8, 10, 1], the same can
be used to extend these existing systems to incorporate
compiler-controlled caching in superword registers. Ideally,
however, an optimizer that integrates the superword paral-
lelism and locality techniques could be even more effective.
For example, in a combined algorithm, selection of which
loops to parallelize could also take superword-level locality
into account. A combined algorithm is the subject of future
work.
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